A 3D rendering of human neurons.
Dec. 5, 2019 — For decades the renowned English physicist Stephen Hawking lived with a motor neuron disease until his death last year. People who suffer from this condition lose functionality of brain cells that control essential muscle activity, such as speaking, walking, breathing and swallowing.
To help individuals afflicted by MNDs, UTSA has embarked on revolutionary research that uses magnetic nano-sized disks and magnetic fields to individually modulate functionality to crucial neurons. This research could open the door to reversal of degenerative conditions like Hawking’s to restore the quality of life for about 1 million adults across the globe.
“When you lose function of a muscle, you start physical therapy or exercises—in other words, a mechanical function to regain your muscles. However, in the case of motor neuronal diseases, the doctor doesn’t tell you to stretch your brain. With these disks, we stretch the brain for you,” said Gabriela Romero Uribe, an assistant professor in UTSA’s biomedical engineering and chemical engineering departments, who is spearheading the research.
—GABRIELA ROMERO URIBE, UTSA Assistant Professor in Biomedical Engineering and Chemical Engineering
The messages from nerve cells in the brain are transmitted to nerve cells in the brain’s stem and spinal cord, and from them to particular muscles. However, when this pathway is damaged, options are limited to restore functionality.
Previous approaches to manipulate brain circuits have included electrical stimulation and optogenetics—the use of light to control ion channels—which may damage tissue. Moreover, manipulation via drug treatments is severely hampered by the blood-brain barrier, a layer of tissue that protects the brain from injury.
“The blood-brain barrier is the biggest issue in pharmacology,” Romero said. “Only about 3% of drugs administered goes into the brain. The rest enter other parts of the body and can damage organs.”
Romero’s approach to use magnetic disks to generate mechanical force is unique. The additional benefit of this method is that it’s nontoxic, drug-free and a minimally invasive procedure that leaves negligible to no damage to the body.
“Our bodies transmit magnetic fields, and we can also apply magnetic fields all over the body,” said Romero. “We have learned that magnetic nanoparticles can receive magnetic fields and translate them into signals that neurons can understand.”
⇒ Explore Uribe's Macromolecular Bio-Interfaces Lab at UTSA.
The nano-sized disks studied at UTSA then absorb magnetic fields and provide torque to stimulate motor neurons to act.
In motor neuron disease, such as Parkinson’s, neurons stop producing dopamine. Romero envisions using the nanoparticles and magnetic fields to start stimulating the neurons to produce dopamine again. Currently, she’s in collaboration with colleagues in Spain to fabricate the wireless disks in large quantities. Those magnetic materials will include gold and titanium.
Experts believe that nine in 10 cases of MND occur by chance. The exact causes are unclear, but the National Institute of Neurological Diseases and Stroke says that toxic, viral and environmental factors may also play a role.
The Institute for Health Metrics and Evaluation, funded by the Bill & Melinda Gates Foundation, reported that about 926,000 people worldwide suffered from one of these types of diseases in 2016, with about 34,000 ending in death each year.
Romero recently received a $1M grant from the National Institutes of Health’s National Institute of General Medical Sciences to fund the next phase of the project. The work was first developed with a seed fund made possible by UTSAs Office for Research Support, part of the Office of the Vice President for Research, Economic Development and Knowledge Enterprise, which fosters collaborative research focused on the world’s most pressing health challenges.
Connect with UTSA online at Facebook, Twitter, YouTube, Instagram and LinkedIn.
UTSA Today is produced by University Communications and Marketing, the official news source of The University of Texas at San Antonio. Send your feedback to news@utsa.edu. Keep up-to-date on UTSA news by visiting UTSA Today. Connect with UTSA online at Facebook, Twitter, Youtube and Instagram.
Covidence is a systematic & scoping review tool used to streamline the process of screening and reviewing articles. Using this software, research teams can easily import studies, perform automatic deduplication, and extract data using templates. This workshop will show attendees how to start a review in Covidence, add collaborators, and get started on screening.
Virtual (Zoom)In this workshop, attendees will be introduced to Pandas, a Python tool for working with data easily. It makes it simple to organize and analyze information when data is organized and categorized, like spreadsheets or tables.
Group Spot B, John Peace LibraryEach fall and spring semester, students convene at the Main Campus at UTSA with booths, ideas and prototypes. A crowd of judges, local organizations, students, faculty and sponsors walk around and talk to the students about their projects and ask questions. Students get the real-life experience of "pitching" their project with hopes of getting funding or support to move to the next level.
UTSA Convocation Center, Main CampusJoin the doctoral candidates for the Doctoral Conferreal Ceremony and celebrate their accomplishments.
Arts Building Recital Hall, Main CampusCelebrate the graduates from the Carlos Alvarez College of Business, College of Education and Human Development, Margie and Bill Klesse College of Engineering and Integrated Design and University College.
AlamodomeCelebrate the graduates from the College for Health, Community and Policy, College of Liberal and Fine Arts and College of Sciences.
AlamodomeThe University of Texas at San Antonio is dedicated to the advancement of knowledge through research and discovery, teaching and learning, community engagement and public service. As an institution of access and excellence, UTSA embraces multicultural traditions and serves as a center for intellectual and creative resources as well as a catalyst for socioeconomic development and the commercialization of intellectual property - for Texas, the nation and the world.
To be a premier public research university, providing access to educational excellence and preparing citizen leaders for the global environment.
We encourage an environment of dialogue and discovery, where integrity, excellence, respect, collaboration and innovation are fostered.